
Salem DiffServ - Paper3_short.doc Page 1 11/19/2002

Server Selection for Differentiated classes of users

Mohamed-Vall M. Salem

Département
d'Informatique, Université

de Montréal, CP 6128,
Succ. Centre-Ville,

Montréal, QC, H3C 3J7,
Canada,

salem@iro.umontreal.ca

Gregor v. Bochmann

School of Information
Technology and

Engineering (SITE),
University of Ottawa, P.O.
Box 450, Stn A, Ottawa,

Ontario, K1N 6N5,Canada,
bochmann@site.uottawa.ca

Johnny W. Wong

Computer Science
Department, University of

Waterloo, Waterloo,
Ontario, Canada N2L 3G1
jwwong@bcr.uwaterloo.ca

Abstract

It is expected that some applications like for instance, e-commerce systems, will be

able in the future to provide different levels of service to different classes of users.

Classes of service may for instance be access-oriented, performance-oriented or content-

oriented. In this paper, we investigate the introduction of differentiated server selection

during the phase of server selection and at independent brokerage entities and not at the

server level. This has the advantage that service differentiation can be realized using a

broker and a set of generic servers, thus enhancing the portability of servers.

Development of servers remains generic while brokers implement sophisticated policy

requirements.

1 Introduction

It is expected that some applications like for instance, e-commerce systems, will be

able in the future to provide different levels of service to different classes of users. For

instance, an e-commerce system may distinguish between a casual user and a registered

user who is a regular customer. Some of the registered users may for example be known

as heavy buyers; they may obtain the “Elite” service, while the normal registered user

obtains the “Premium” service, and the casual user the “Normal” service. These

different classes of service may differ in several aspects, like for instance, a shorter

response time for a higher class of service. A higher class of service may also provide

Salem DiffServ - Paper3_short.doc Page 2 11/19/2002

facilities that are not available at the basic level, such as for instance a teleconference

chat with a sales person[2].

There has been a considerable amount of work in the literature [8,4,5,3,9] on the

provision of different categories of service. Most of this related work, as we will see

further in this paper, requires specialized resource management schemes to be

implemented at the server in order to enable differentiation between users. In this paper,

we study an approach where service differentiation is delegated to a broker node. This

approach is based on an architecture that we have investigated in [1]. In our architecture

a “broker” is used to distribute load to a set of replicated servers for the case of one

class of users. This architecture offers improved scalability. It also allows the broker to

gather information about server status and client requirements, and use such information

for load balancing purposes. Based on our architecture, the broker can include service

differentiation as part of the server selection process. Performing differentiation during

server selection has the advantage of enhancing the portability of servers. This has the

advantage that service differentiation can be realized using a broker and a set of generic

servers, thus enhancing the portability of servers. Development of servers remains

generic while the broker may implement sophisticated policy requirements.

This paper is organized as follows. In Section 2 we look at some specific

considerations that need to be taken into account for the realization of a differentiated

service. Section 3 presents the key features of our underlying basic architecture. In

Section 4 we extend the basic architecture in order to support service differentiation, and

we propose a server selection policy for two classes of users. In Section 5 we present the

evaluation of the architecture by simulation. Section 6 gives an overview of some of the

related work and finally, in Section 7, we discuss some related issues and summarize our

conclusion. .

2 Service Differentiation

In order to be able to implement a differentiated service, any architecture has to include

mechanisms by which users are identified and classified. In this section, we consider

Salem DiffServ - Paper3_short.doc Page 3 11/19/2002

different alternatives for the identification and classification of users. We will discuss

later in the Sections 4, and 7 of the paper how they can be supported in our architecture.

2.1 Identification of Users

The issue of user identification client-server applications has been investigated

extensively. The most critical problem is the storage and retrieval of user profiles. A

widely used technique in Web applications is the use of "Web Cookies" where the client

software holds a small amount of state-information associated with the user. Servers

send cookies to clients as part of the HTTP response headers. When a client

subsequently interacts with a server, the cookies are automatically retransmitted as part

of the HTTP request headers and it allows server-side to identify the user.

2.2 Classification of Users

Classification of users may be done in many ways. It depends largely on the business

model used at the server side. In what follows, some of the approaches reported in the

literature are discussed.

2.2.1 Static Classification

The classification of users is carried out at the server side and each user is required to

register before accessing a server. During the registration phase, a user may subscribe to

one of several categories of service each of which corresponds to certain privileges.

2.2.2 Dynamic Classification

The classification of users can be dynamically defined based on the identity of

the user, the actual status of servers, and/or the status of the user’s sessions. In such

classification, the class of priority of a user may also change over time. For example

in [3], sessions that are already admitted to a system have more privileges than newly

arriving sessions. A user’s session may therefore gain priority as the session

proceeds. Another example is the classification proposed in [9] where three classes of

priority are defined: low, medium and high. A new user starts at the high priority

class, and his priority changes depending on the length of his session and the type of

transactions he executes.

Salem DiffServ - Paper3_short.doc Page 4 11/19/2002

2.2.3 Classification based on request type

In this type of classification, the priority is based on request type and not on the

identity of the user. This can best be illustrated by means of examples. An E-commerce

site may, for example, organizes its content in a way that favors some types of

transactions regardless of the identity of the user accessing the server. For example,

browsing and searching transactions in an E-commerce site may both belong to the

same normal class of priority while the payment transaction may be considered as the

most important class.

3 Basic Architecture

Our basic architecture is depicted in Figure 1. In this architecture, scalability is

achieved by server replication. We consider the use of a “broker” to distribute load to

replicated servers. Our architecture allows for a flexible organization of resources used

by web sites. The broker could be at the server site under the same authority as the

replicated servers. This is applicable, for example, to sites with heavy load and high

degree of replication. Different sites may also share the same broker. In this case, the

broker could be an independent brokerage service that manages the assignment of

servers for affiliated sites. A description of our architecture is as follows[1]:

Server selection is “session” based where the broker assigns a client to a specific

server for a given duration of time (called the quantum). Suppose a client would like to

access a given web site, say store1.com, as shown in Figure 1. If the IP address

corresponding to store1.com is in the client’s cache, then the request is sent directly to

that IP address. Otherwise a server selection request is first sent to the broker via DNS

mapping. The broker then selects a server and returns the IP address of this server,

together with the quantum size, to the client. The client caches the IP address of the

selected server and starts his session with the server. The cache entry will be deleted

when the quantum expires. Note that the broker is only involved in the initial server

selection, and the user interacts directly with the assigned server during the session.

Our architecture allows the broker to gather information about server status and

client requirements, and use such information for load balancing purposes. Performance

Salem DiffServ - Paper3_short.doc Page 5 11/19/2002

data are collected by monitoring agents at the servers, and sent to the broker

periodically.

Monitoring

Server side DNS

Session

1.1.2.a

1.1.2.c Store1.com?

Client

1.1.2.c Store1.com

1.1.1.y Store2.com

Server 1

IP: 1.1.2.a

Server 2

IP: 1.1.2.b

Broker

IP: 1.1.2.c

Which server ?

Figure 1: Basic Architecture

4 Extension to support service differentiation

In this section, we extend our basic architecture to support different classes of

users. For convenience, our discussion will be focused on the static classification. The

application of our extended architecture to dynamic classification and classification

based on request type will be discussed later in the Section 7 of the paper.

4.1 User Classification

In a static classification model, a new user is given a default priority class by the

broker. This user is then assigned to a server for a quantum of time long enough to

conduct a registration. From that point on, the classification of that user will become

known.

4.2 Organization of Resources at the Server-side

The realization of selection policies depends also on the organization of the available

resources and hence the definition of the quotas reserved for each class of users. Servers

Salem DiffServ - Paper3_short.doc Page 6 11/19/2002

may be organized into sub-clusters each of which servicing a particular class of users. Or

they may also be shared without any regards to user classes (i.e. users from different

categories may be served at the same physical server). The definition of a quota for each

category of users is a very important parameter, which may be statically defined by the

system administrator based on previous knowledge of the size of each group of users for

example. It may also be dynamically adjusted while the system is running, based on

observed values of the incoming traffic and or the QoS delivered to users.

We will use, throughout this paper, the following notations to describe the various

possible forms of organization in the case of two classes of priorities. Let Class A

denotes the class of important users, and Class B denotes the class of normal users. Let

AC and BC be the sets of servers dedicated to users of the classes A and B respectively.

These sets are reserved for each class of users and may not be shared by any other class

at any time. Let sharedC be the set of servers that may be shared among users form

different classes. The resources available at the server side may be organized in different

ways based on the sizes of the different sets of resources AC , BC and sharedC . For

example, the following main configurations may be identified:

• Complete sharing of resources (AC =0 and BC =0): All the available resources are

shared between the two classes of users.

• Partial sharing of resources (sharedC ≠0, AC ≠0): A private set of resources (servers) is

reserved for class A, and in this case, class B can only use the shared cluster.

• Partitioned resources (sharedC =0): Users from the two classes are served at two

physically different sub-clusters.

4.3 Server Selection

Selection policies are often characterized by the objectives they seek to achieve.

They may for instance be access-oriented, performance-oriented or content-oriented. In

access-oriented objectives for example, important users are given the priority for the

access to servers. The objective is then to minimize the rejection probability of the most

important class of users regardless of any QoS parameters. In performance-oriented

Salem DiffServ - Paper3_short.doc Page 7 11/19/2002

differentiation on the other hand, the admission of users from different classes is subject

to QoS verification. Users are admitted only if their specified QoS requirements may be

delivered or if their presence will not affect the QoS received by active users. The

objective of differentiation may also be only related to the content provided to the

different customers, and in this case, users from different classes do not receive the same

content while accessing the same service.

Another important factor that may characterize a policy is the level of the system

at which the policy is applied and how it enforces the delivery of the quality of service

committed for users. A policy may be implemented at the single server level, either by

adding specific modifications to application servers or the operating system or both[4].

They may also be implemented inside independent entities like for instance “brokers” in

the case of our architecture.

Enforcement of quality of service refers to the capacity of a policy to enforce the

guarantees given to users. A policy may then be either preemptive or non- preemptive

[8], if it may or not interrupt the service of an ongoing request or session. A preemptive

policy may for example interrupt users from a lower priority class if the resources are

needed for more important users. Policies may further be classified according to their

flexibility in service provisioning into so-called work-conservative and non-work-

conservative ones [8]. A policy is said to be work-conservative if it allows lower priority

requests/sessions to obtain additional resources in the case that few higher priority

requests/sessions are present. A non-work-conservative policy on the other hand will

always limit lower priority requests/sessions to their initially defined quota.

We will define in the next subsection a selection policy that takes into account two

classes of service and that is applicable in the context of our architecture.

4.3.1 Example: Server Selection with Performance Guaranties

The objective of this policy is to organize the admission of new users from

different classes taking into account their different QoS-requirement. The class of users

with the hardest requirement (important users) is then given privilege in the access to the

resources at the server side. The admission of a new user (session) is restricted only if

Salem DiffServ - Paper3_short.doc Page 8 11/19/2002

the committed QoS for its own class of users may not be delivered at the moment or if

the QoS of active users from a more important class is in danger of being violated.

The broker in charge of server selection operates in two different modes, namely

the normal and the differentiation mode. A precaution threshold defines the limit between

the two modes of operation. This threshold is chosen carefully to prevent, as much as

possible, the violation of quality of service desired for the important class of users. In

the normal mode, any load-balancing algorithm without differentiation between users

may be used. The level of saturation of the system does not necessitate any

differentiation since the system can handle all users with acceptable QoS. The broker

enters the differentiation mode when the saturation level of the cluster of servers reaches

the so-called "precaution threshold", and it starts using a differentiation policy.

BRmax

minR Admit class B Reject class B

BB RR max≤ BB RR max≥
:BC

ARmax

minR Admit classes A and B Reject classes A and B

diffRR ≤ ARR max≥

diffR

ARR max≤

Admit only class A
:sharedC

ARmax

minR Reject class A

ARR max≥AA RR max≤

Admit only class A
:AC

BRmax

minR Admit class B Reject class B

BB RR max≤ BB RR max≥
:BC

BRmax

minR Admit class B Reject class B

BB RR max≤ BB RR max≥
:BC

ARmax

minR Admit classes A and B Reject classes A and B

diffRR ≤ ARR max≥

diffR

ARR max≤

Admit only class A
:sharedC

ARmax

minR Admit classes A and B Reject classes A and B

diffRR ≤ ARR max≥

diffR

ARR max≤

Admit only class A
:sharedC

ARmax

minR Reject class A

ARR max≥AA RR max≤

Admit only class A
:AC

ARmax

minR Reject class A

ARR max≥AA RR max≤

Admit only class A

ARmax

minR Reject class A

ARR max≥AA RR max≤

Admit only class A
:AC

Figure 2: Differentiation between users depending on system response time

The selection policy proceeds as follows. Let)(
max
AR and)(

max
BR be respectively the

thresholds for the acceptable mean response time for the classes A and B of users. Let
AR and BR be respectively the current mean response time for the classes A and B.

Let diffR to be the threshold after which the system activate its differentiation mode

where the access to all servers is limited to the users from the class "A". Figure 2

illustrates the different phases of the policy for the different possible organizations of

Salem DiffServ - Paper3_short.doc Page 9 11/19/2002

the server side, and the algorithm is given in Figure 3. The server selection policy

provides the following guarantees:

• A client is admitted only if the required response time maybe delivered. This

response time may be defined by the system's owners or explicitly required by

customers. For example a class “A” user is rejected if the response time is longer

than)(
max
AR .

• There is absolute priority for active users over new users from the same class. If the

response time, in the system, is beyond the acceptable thresholds, admitting any new

client will only worsen the situation of active ones.

• In the case where only a shared resource (set sharedC) is available, the realization of

the policy provides, besides the two earlier stated guarantees, an absolute priority for

the important class of users. If there are enough users from class "A" requesting

service, and since)(
max
AR ≤)(

max
BR , no class B users may enter the system and eventually

only class A will be served.

The realization of the policy gives strong guaranties for important users but may

cause a waste of resources in situations of high load with few important users and a large

number of normal users. If after the response time of the cluster sharedC has exceeded

the threshold diffR and only class B is coming, the resources are not used as much as

they could since the system, by precaution, rejects normal users and no important ones

are coming. If however, the incoming requests are either a mixture of classes A and B or

totally dominated by class A, such problem does not arise and the system operates

normally favoring important users and no resources are wasted.

This selection policy may also be realized using other forms of resource

organization, like for instance the use of a totally portioned cluster (sharedC = 0). In this

case, the admission control at the broker enforces the admission conditions for the two

classes of users on the two physically separated sub-clusters AC and BC . This realization

of the policy has the advantage of simplicity, but the definition of the right quota for

Salem DiffServ - Paper3_short.doc Page 10 11/19/2002

each class of users may not be always easy to define. We will evaluate in the rest of the

paper, the performance of the policy for a completely shared cluster of servers.

Figure 3: Server Selection Algorithm

5 Performance Evaluation

5.1 Simulation Model

The simulation model consists of a single broker, N servers and M concurrent

clients. The M clients are divided into two groups of users respectively denoted by A and

B. The class A represents the important users and the class B represents the normal

users. For each client, a page request is submitted at the end of a “user-think time”. Each

page request corresponds to one or more “object requests” to be submitted to the

server. We assume that at the client, object requests are submitted sequentially as

required in HTTP 1.0. This is modeled as follows. When a response is received for an

object request, the next object request is submitted after some processing at the client.

When all the objects have been received, the page request is satisfied, and the client

starts the next user think time. We further assume that objects are not cached and

network delays are assumed to be negligible. As in [7], two heavy-tailed distributions,

namely Pareto and Weibull, are used to model the user think time, the number of objects

per page, and the processing time between requests in a single page.

Class B:
 If (BR < BRmax and AR < diffR)

 Select the best server in (sharedC and BC)

 Else if (BR < BRmax)

Select the best server in (BC)
 Else

Reject user

Class A:
 If (AR < ARmax)

 Select the best server in (sharedC and AC)
 Else

Reject user

Salem DiffServ - Paper3_short.doc Page 11 11/19/2002

Each server is modeled by two parameters. The first parameter (capacity) gives the

time required by a server to process one byte of data[6]. The second parameter is the

maximum waiting time for a request at the queue of a server as described in [3]. For

example, if a server can serve one byte of data in 10-6 seconds (i.e. a capacity of 106

bytes/sec), and the average size of an object is 10,000 bytes, then the server can process

on average 100 objects per second. In our experiments, the following configuration is

used: a cluster composed of four servers, each of which has a capacity of 106 bytes/sec.

The maximum waiting time, before a user's request times-out, is set to 2 seconds. When

a user request times out, the user retries three consecutive times before giving up and

aborting the session.

The load on the system is controlled using a load generator that continuously

creates new users each of which enters the system for a session. The inter-arrival time

between any two new users is an exponential distribution. Two levels of load are

modeled during our simulations, respectively heavy and high load. The mean inter-arrival

time between new users for the heavy load conditions is 0.15 seconds and is 0.20

seconds for the less heavy load conditions. The maximum acceptable response time
ARmax is set to 1.5 seconds during all the simulations. We will use the case of no

differentiation to illustrate the difference between the two levels of loads as follows: In

order for the broker to satisfy the condition A
i RR max≤ for the mean response time for

each server i, it may only admit 70.2% of the incoming sessions under the heavy load

conditions and 92.86% in the (normal) high load conditions. It is worth noting that the

case of A
i RR max≤ represents the case where no differentiation is used between users by

the broker. Each newly generated session has a probability PA to be of class "A" and a

probability PB = 1 - PA to be of class "B". The values used during our simulations for PA

and PB are respectively 0.1 and 0.9. The length of users' sessions is derived from an

exponential distribution with a mean value of 36 pages in accordance with the results

presented in [3].

The simulations are executed for a completely shared cluster of servers. The

selection algorithm is implemented as follows. The broker forms two virtual groups of

servers for each class of users. The membership of each group is defined based on the

Salem DiffServ - Paper3_short.doc Page 12 11/19/2002

response time of each server. Group A contains all servers that may serve a user from

the class "A" and which verify the admission conditions for class "A"(a Class “A” user

may be served at any server i that satisfies the condition A
i RR max≤). The members of

group B are all servers that verify the admission condition for class "B"(a Class “B” user

may be served at any server i that satisfies the condition diffi RR ≤). Both groups are

initially equal and contain, as members, all the active servers under the control of the

broker. Each time a performance report is received from a monitoring agent associated

with a server, the broker uses the mean response time of that server to re-evaluate its

membership in each group. At any instant in time, the group A contains servers with

response time A
i RR max≤ and group B contains servers with response time diffi RR ≤ .

Upon reception of a message from a client requesting a server, the broker uses the less

utilized server algorithm (LU) described in [1] to choose the less utilized server from the

group that corresponds to the class of the client. If all servers in the same group have

the same utilization, a random selection is used to break the tie.

5.2 Simulation Results

The performance measures of interest, in our experiments, are: (1) the probability

P(c) of admission of sessions from class c, and (2) the probability R(x) that the response

time for users from class "A" is less than a certain value x. P(c) is a measure that

indicates the effect of the differentiated server selection on the admission of users from

the different categories. It can be interpreted as follows. During the simulation, and

under a specific load, P(c) is the percentage of users from class c that were admitted by

the broker. R(x) is used to estimate the effect of the differentiation, between users, on

the response time experienced by the important class of users.

5.2.1 Session Admission

Figure 4 shows the statistics of the admission of users from different classes at the

broker level (i.e. before the beginning of their sessions). The broker achieves the main

goal, which is the guarantee that all the important users are admitted to the system. As

expected also, the admission of important users (class A) increases, as the access to

servers is restricted for class B. Another important goal is to admit the maximum

Salem DiffServ - Paper3_short.doc Page 13 11/19/2002

possible number of users from class B without affecting users of class A. For example

using a heavy load, a timeout of 2 seconds, and a threshold diffth = 0.15 seconds, only

57% of class B are admitted to the system while the remaining 42.5 are rejected by the

broker. As the admission condition is relaxed using larger values for the threshold, the

admission of class B is improved. It becomes for example, as shown in the same figure,

67.4% for diffth = 0.6 seconds, and 77.3% for diffth = 1.05 seconds. The admission ratio

for all customers when no differentiation is used equals 98%.

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0.1
5

0.3
0

0.4
5

0.6
0

0.7
5

0.9
0

1.0
5

1.2
0

1.3
5

1.5
0

differentiation threshold

Pe
rc

en
ta

ge Class A/ 2 sec.
Class B/ 2 sec.
Class A/ 10 sec.
Class B/10 sec.

Figure 4: Statistics of admission of users in heavy load conditions

When a large timeout is used for the abortion of sessions, the results for class B

as shown in the lower curve in Figure 4, are different from short timeout values for large

values of the threshold. In fact when the timeout value is large, changes in the value of

the threshold beyond some point (diffth = 0.45 seconds in our simulation) do not have

significant effects on the admission of users from class B. The difference between the

two lower curves in Figure 4 for the admission of B are explained by the degree of

patience of users expressed here by the timeout value. In short timeout simulations, and

which corresponds to impatient users, part of the admitted users abort their sessions

because of the long unacceptable waiting time at servers, which in turn results in a less

loaded system. In the case of longer timeout values, users are willing to hold on for the

Salem DiffServ - Paper3_short.doc Page 14 11/19/2002

selected servers even if the response time is long, thus reducing any chances for the

admission of new users. The apparent benefits or improvement in the admission of

users from class B in the case of short timeout has a hidden side effect, which may be

dramatic for some type applications like for instance Electronic Commerce application

where session completion is a key parameter for the profitability of business[3].

Figure 5 shows the statistics for the completion of sessions for the users

admitted by the broker in heavy load conditions. The probability that a class “A” user

abort its session increases as the number of admitted users from class B increases. The

probability that an important session completes normally decreases gradually as the

threshold diffth increases towards the point of no differentiation (diffth = ARmax =1.5

seconds). When a longer time is used (results not shown here), the admission control at

the broker efficiently differentiates in favor of class “A” users who can complete

normally their sessions. Our simulations showed the same results in lower load

conditions but at different scales. The results are presented below for the admission of

users in Figure 6 and for the completion of admitted sessions in Figure 7

(timeout= 2 seconds)

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0.15 0.3 0.45 0.6 0.75 0.9 1.05 1.2 1.35 1.5
differentiation threshold

Pe
rc

en
ta

ge

Admission of A's
Admission of B's
Completion of A's

Figure 5: Statistics of the completion of sessions for class A in heavy load conditions

Salem DiffServ - Paper3_short.doc Page 15 11/19/2002

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

0.1
5 0.3 0.4

5 0.6 0.7
5 0.9 1.0

5 1.2 1.3
5 1.5

differentiation threshold

Pe
rc

en
ta

ge Class A/ 2 sec.
Class B/ 2 sec.
Class A/ 10 sec.
Class B/ 10 sec.

Figure 6: Statistics of admission of users in heavy load conditions

(timeout = 2 seconds)

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

0.1
5 0.3 0.4

5 0.6 0.7
5 0.9 1.0

5 1.2 1.3
5 1.5

differentiation threshold

Pe
rc

en
ta

ge Admission of A's
Admission of B's
Completion of A's

Figure 7: Statistics of the completion of sessions for class A in high load conditions

5.2.2 Response Time

The objective of differentiated services is not only to give important users the

access priority to the resources available in the system. It is also very important to give

Salem DiffServ - Paper3_short.doc Page 16 11/19/2002

them a descent quality of service. The figures below show the effect of restricting the

admission of new sessions on the QoS received by the important class of users for

selected values of the differentiation threshold. The figures are organized into two

groups one for high load conditions and one for heavy load conditions. In each group

the figure on the left shows the results when a short timeout value is used and the figure

on the right shows the results for longer timeout value. The left side of Figure 8 for

example, shows the performance results achieved under heavy load conditions for

different thresholds and a short timeout for requests' abortion. The percentages of

requests that are completed during the simulation with a response time less than 1.6

seconds are 96%, 93%, 83%, and 67% respectively for the thresholds 0.3, 0.6, 1.05, and

1.5 seconds. The right side of the Figure 8 shows the results of simulation with longer

timeout values. In this case the users are more patient and are willing to wait longer time

before aborting their ongoing requests. The percentage of requests that are completed

during the simulation with a response time less than 1.6 seconds are 80%, 76%, 69%,

and 53%. Class "A" has very good admission results 100%, 99%, 98%, and 71 %. Figure

9 shows the results of the simulations under less heavy load condition. The figure

exhibits the same general remarks mentioned in the paragraph 5.2.1 with regards to the

differences in performance when the threshold is varied.

The results of the simulations showed the expected difference in performances

when the threshold diffth is varied from small to larger values. The smaller the value of

the threshold, the better is the QoS delivered to class "A" at the price of rejecting more

and more of class "B" of course. This difference is visible in the gaps between the curves

that represent the performance of individual simulations in Figure 8 and Figure 9.

Salem DiffServ - Paper3_short.doc Page 17 11/19/2002

0.00

0.20

0.40

0.60

0.80

1.00

0.4

0.8

1.2

1.6

2 2.4

2.8

3.2

3.6

4 4+

upper limit for response time (sec.)

P
er

ce
nt

ile

0.30
0.60
1.05
1.50

0.00

0.20

0.40

0.60

0.80

1.00

0.4

0.8

1.2

1.6

2 2.4

2.8

3.2

3.6

4 4+

upper limit of the response time (sec.)

pe
rc

en
til

e 0.3
0.60
1.05
1.50

Figure 8 Cumulative distribution of the response time for class "A" in heavy load
conditions using selective thresholds (left timeout =2.0 sec., right timeout =10 sec.)

0.00

0.20

0.40

0.60

0.80

1.00

0.4

0.8

1.2

1.6

2 2.4

2.8

3.2

3.6

4 4+

Upper limit of the response time (sec.)

Pe
rc

en
ta

ge
 o

f r
eq

ue
st

s

0.30
0.60
1.05
1.50

0.00

0.20

0.40

0.60

0.80

1.00

0.4

0.8

1.2

1.6

2 2.4

2.8

3.2

3.6

4 4+

Upper limit of the response time (sec.)

P
er

ce
nt

ag
e

of
 re

qu
es

ts

0.3
0.60
1.05
1.50

Figure 9 Cumulative distribution of the response time for class "A" in high load
conditions using selective thresholds (left timeout =2.0 sec., right timeout =10 sec.)

6 Related Work

Several studies and experimentation on the provision of a differentiated service for

commercial Web sites have been published in the literature. Most of these approaches

are based on the modification of servers to include the differentiation between requests

to the same content. In [8] Almeida et al. investigated the provision of differentiated

QoS using priority-based request scheduling. They studied and experimented with two

approaches, namely the user-level and kernel-level approaches. N. Vasiliou and H.

Lutfiyya have also proposed a similar Web server prototype [4] that supports

differentiated services at the server level. In [3], an architecture is presented for QoS in

Salem DiffServ - Paper3_short.doc Page 18 11/19/2002

Web-oriented systems in which, an admission control mechanism is used to improves

the performance of overloaded servers and that guarantees better chances for active

sessions to complete. In [9], Daniel A. Menacsé et al. presented a business oriented

resource management approach that dynamically categorises customers' requests based

on user profiles. The authors proposed a policy that uses three classes of priority: low,

medium and high. When a new user starts a session, he enters the high priority class but

after that he may remain in it or move to another class depending on the type of

transactions he executes. Servers are modified to take into account the information on

users priorities in the access to resources (processors, disks, etc.).

The approaches presented in [8],[4], [3], [9] necessitate the modification of generic

servers to include differentiation mechanism between users. In our work, the servers are

not changed, and the mechanisms are rather included in the server selection phase. The

user-level differentiation mechanisms proposed in [8], and [4] can be supported in our

architecture. The same remark applies for the approach used in [3], since our

architecture supports the notion of session. The work proposed in [9] and the kernel-

level approch in [8], all necessite the use of modified servers and operating systems to

enforce service differentiation. The approach in [9] may not scale very well with a broker

architecture if the class of a user changes too often.

7 Discussion and Conclusion

We have discussed in this paper the different architectural choices regarding the

classification of users into priority groups and looked into the specific case of

classification through registration. Our architecture can also support other approaches

for classification. The dynamic classification of users can for example be delegated to the

broker if the degree of importance of a user can be defined at the beginning of his

session. This is applicable for example to the cases where the broker may decide based

on the status of the system, the class of priority of a new user. If however the class of

priority of a user depends on some changing business values that only the server can

compute on the fly as described for instance in [9], the server is a more suitable place to

handle the classification. The classification of customers may also be based on the

delivered content or the type of transaction. In this case, the classification assumes a

Salem DiffServ - Paper3_short.doc Page 19 11/19/2002

model in which, requests are assigned priorities based on which documents they are

requesting, not on where requests came from. This type of classification can be

supported by our architecture using for example virtual sub-clusters of servers. In this

case, the content offered by a server is organized into virtual sub-clusters, each of which

represents a specific class and is distinguished from other classes by a different service

name. The DNS system can be used to resolve all the different service names to the

address of the broker and the broker identifies each class of priority by the name of the

service for which a selection request is received.

In this paper, we investigated the realization of an architecture for QoS for two

classes of users in client-server applications. This architecture is based on the notion of a

“broker” that handles all the details of server selection. While the original design of our

architecture was motivated by scalability and load sharing considerations, the specific

objective of this work is, however, to extend the scalable architecture to support the

provision of different classes of service. Performing differentiation during server

selection has the advantage of enhancing the portability of servers. Development of

servers remains generic while specialized brokers implement sophisticated policy

requirements. A server selection algorithm in the context of two classes of priorities was

proposed and evaluated by simulations. The simulations showed the feasibility of a

differentiated service at the server selection time. This policy is based on the use of

thresholds, defined by the system administrator, to control the admission of users from

different categories.

There are several further extensions to this work that might be considered and more

specifically what follows: (1) the use of differentiation may result in service denial for

some users like for instance the lower-priority ones. An important future work will be to

look into an alternative solution to the simple denial of service like for instance the use

of future reservation of resources for some users. The architecture proposed in this

paper is quite flexible; (2) the client-broker protocol can be extended to include quality

of service negotiation on an individual basis to give users the ability to define their own

requirements instead of a fixed number of classes predefined by the server side; and (3)

additional scalability in the context of this architecture can be provided by the use of

multiple brokers. In such context it is interesting to look into the question of negotiation

Salem DiffServ - Paper3_short.doc Page 20 11/19/2002

between brokers of the same service that may implement different differentiation

policies on a regional basis for example.

8 References
[1] Mohamed-Vall M. Salem, J. W. Wong, and G. v. Bochmann: "A Scalable Load-

Sharing Architecture for Distributed Applications", in the proceeding of SoftCom'2001,
Split, Croatia.

[2] Gregor v. Bochmann, Brigitte Kerhervé, Hanan Lutfiyya, Mohamed-Vall M.
Salem and Haiwei Ye: "Introducing QoS to Electronic Commerce Applications", in
ISEC2001 held in Hong Kong, April 26-28, 2001. Springer 2001,Lecture Notes
in Computer Science (LNCS) Volume 2040.

[3] Ludmila Cherkasova, and Peter Phaal: "Session Based Admission Control: a
Mechanism for Improving Performance of Commercial Web Sites". In Proceedings of
Seventh International Workshop on Quality of Service, IEEE/IFIP event,
London, May 31-June 4, 1999.

[4] N. Vasiliou and H. Lutfiyya, "Providing a Differentiated Quality of Service in a World
Wide Web Server", Performance Evaluation Review, Volume 28, Number 2, pp.
22-27.

[5] N. Vasiliou and H. Lutfiyya, "Managing a Differentiated Quality of Service in a World
Wide Web Server", in Integrated Network Management, Volume III, May 2001.

[6] V. Cardellini, M. Colajanni, P. S. Yu, "DNS dispatching algorithms with state estimators
for scalable Web-server clusters'', World Wide Web Journal, Baltzer Science, Vol. 2,
No. 3, pp. 101-113, Aug. 1999.

[7] Paul Barford and Marck Crovella, "Generating Representative Web Workloads for
Network and Server Performance Evaluation", in Proceeding of the 1998 ACM
SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems, pp. 151-160, July 1998.

[8] Jussara Almeida, Mihaela Dabu, Anand Manikutty and Pei Cao, "Providing
Differentiated Levels of Service in Web Content Hosting" , Proc. Of First Workshop on
Internet Server Performance, ACM SIGMETRICS 98, June 1998.

[9] Daniel A. Menacsé, Virgilio A. F. Almeida, Rodrigo Fonseca, and Marco A.
Mendes, "Resource Management Policies for E-commerce Servers", Second Workshop on
Internet Server Performance, in conjunction with ACM SIGMETRICS 99/FCRC,
Atlanta, GA, May 1st, 1999.

